Modelling and Evaluating Air Quality with Fuzzy Logic Algorithm-Ankara-Cebeci Sample

Ismail Atacak, Nursal Arici, Dilem Guner
  • Ismail Atacak
    Computer Eng., Technology Fac., Gazi Univ. Ankara – 06500, Turkey | iatacak@gazi.edu.tr
  • Nursal Arici
    Computer Eng., Technology Fac., Gazi Univ. Ankara – 06500, Turkey
  • Dilem Guner
    Computer Eng., Sciences Inst., Gazi Univ. Ankara – 06500, Turkey

Abstract

Air is one of the most important life sources for all living things. Gases that are present and absent in the composition of clean air also considered as pollutants in the atmosphere. If the pollutants rise above a certain concentration level, air pollution occurs. Air pollution damages all living things, especially human health. Accurate estimation of pollutant concentrations through air pollution modeling has an important effect in reducing the adverse effects of pollution and taking necessary precautions. Conventional statistical models are widely used in air pollution forecasting and modeling. As a different approach, in this study, fuzzy logic algorithm, which has been increasingly successful in many field applications, has been used to model air quality and air pollution analyzes were made based on this model. Ankara -Cebeci province data was used in the sample of the research.

Keywords

Air pollution, fuzzy logic algorithm; air quality index; pollutant concentrations

Full Text:

PDF
Submitted: 2017-11-13 17:15:50
Published: 2017-12-12 13:20:45
Search for citations in Google Scholar
Related articles: Google Scholar

References

Z. Gemici , O. Kale ve B. K. Çatal, “Hava kalitesi izleme sürecinde mevcut durum ve cafe direktifi gerekliliklerine göre kentleşmede hava kalitesi unsuru,” 6. Ulusal Hava Kirliliği ve Kontrolü Sempozyumu, İzmir, Türkiye, 2015, s. 910-923.

B. Aydınlar, H. Güven ve S. Kirksekiz, “Hava Kirliliği Nedir, Ölçüm ve Hava Kalite Modelleme Yöntemleri Nelerdir,” SU Fen Bilimleri Enstitüsü Çevre Mühendisliği Bölümü Hava Kirliliği ve Modellemesi Dergisi, 2009. [Online]. Available: www.Sahakk.sakarya.edu.tr/ documents/hava%20kirliligi%20ve%20modellemesi%20I.pdf,Acces-sed on: Nov. 01, 2017.

E. Kardeşoğlu, M. Yalçın ve Z. Işılak, “Hava Kirliliği ve Kardiyovasküler Sistem,” TAF Preventive Medicine Bulletin, cilt. 10, sayı. 1, s. 97-106, 2011.

M. Sharma, R. Pandey, M. Maheshwari and B. Sengupta, “Interpretation of air quality data using an air quality index for the city of Kanpur,” India Journal of Environmental Engineering and Science, vol. 2, no. 6, pp. 453-462, 2003.

G. Kyrkilis, C. Arhontoula and A. K. Pavlos, “Development of an aggregate Air Quality Index for an urban Mediterranean agglomeration: Relation to potential health effects,” Environment International, vol. 33, no. 5, pp. 670-676, 2007.

İ. Bıyık, “Hava kirliliğinin yapay zeka teknikleri ile belirlenmesi,” Y.L. Tezi, Fen Bilimleri Enstitüsü, Bahçeşehir Üniversitesi, İstanbul, Türkiye, 2010.

W. Silvert, “Fuzzy indices of environmental conditions,” Ecological Modelling, vol. 130, no. 1, pp. 111-119, 2000.

O. Pokrovsky, R. Kwok and C. Ng, “Fuzzy logic approach for description of meteorological impacts on urban air pollution species: a Hong Kong case study,” Computers & Geosciences, vol. 28, no. 1, pp. 119-127, 2002.

M. Sowlat, H. Gharibi, M. Yunesian, M. Tayefeh Mahmoudi and S. Lotfi, “A novel, fuzzy-based air quality index (FAQI) for air quality assessment,” Atmospheric Environment, vol. 45, no. 12, pp. 2050-2059, 2011.

T. Mandal, A. K. Gorai and G. Pathak, “Development of fuzzy air quality index using soft computing approach,” Environmental Monitoring and Assessment, vol. 184, no. 10, pp. 187-196, 2012.

M. Assimakopoulos, A. Dounis, A. Spanou and M. Santamouris, “Indoor air quality in a metropolitan area metro using fuzzy logic assessment system,” Science of The Total Environment, vol. 449, pp. 461-469, 2012.

A. Milla dos Santos, A. Passuello, M. Schuhmacher, M. Nadal, J. Domingo, C. Martinez, S. Segura-Muñoz and A. Takayanagui, “A Support Tool for Air Pollution Health Risk Management in Emerging Countries: A Case in Brazil,” Human and Ecological Risk Assessment: An International Journal, vol. 20, no. 5, pp. 1406-1424, 2014.

S. Dursun, F. Kunt and O. Taylan, “Modelling sulphur dioxide levels of Konya city using artificial intelligent related to ozone, nitrogen dioxide and meteorological factors,” International Journal of Environmental Science and Technology, vol. 12, no. 12, pp. 3915-3928, 2015.

Ankara iline ait 1 Ocak 2010-31 Ekim 2016 tarihleri arasındaki hava kalitesi verileri, T.C. Çevre ve Şehircilik Bakanlığı WEB sitesi, [Online]. Available: http://www.havaizleme.gov.tr/Default.ltr.Aspx Basic Accessed on: Jan. 12, 2016.

Abstract views:
131

Views:
PDF
62




Copyright (c) 2017 International Journal of Intelligent Systems and Applications in Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 
© AtScience 2013-2018     -     AtScience is a registered trademark property of AtScience.